04.07.2024

Виды дистилляции. Что такое дистилляция и ректификация


Дистиллированная или очищенная вода получается путём перегонки воды в кубе. Аппарат называют ещё и по названию процесса - дистиллятор. Нагревают жидкость, пары, оседая в конденсаторе, избавляются от примесей.

Если дважды прогнать жидкость, на выходе получат бидистиллят. Только для изготовления его используют другую установку - кварцевый аппарат. Вещество отличается полным очищением от солей. В такой воде ничего полезного для здоровья человека нет.

Применение очищенной воды

Дистиллят используют для приготовления различных веществ или соединений в научной деятельности, химической промышленности и фармакологии. Для контроля продукции в каждой лаборатории предприятия применяют воду, полученную при дистилляции.

Область применения бидистиллята меньше. Продукт перегонки используют при работе с веществами особой чистоты.

Дистилляция при изготовлении алкоголя

Процесс дистилляции происходит и в быту, когда цель - получение самогона из браги. Её прогоняют через аппарат. Жидкость нагревают, испаряются газообразные соединения спирта. В конденсаторе змеевидного типа при перегонке на главной стадии дистилляции происходит обратный процесс: пары превращаются в самогон. В нём содержатся сивушные масла.

Примеси удаляют добавлением кристаллов марганца. Вещество, вступая в реакцию с соединениями, выпадает в осадок чёрного цвета. Жидкость фильтруют, затем самогон можно использовать по назначению.

Некоторые недобросовестные производители перебивают полученный спирт после перегонки ароматизирующими добавками или очищают химикатами. Качество такого самогона самое низкое. Употребляя её, люди наносят вред здоровью.

Другой метод избавления от примесей - дополнительная перегонка. Процесс позволяет изготовить не только очищенный спирт, но и увеличить крепость.

Изготовление водки

Водка изготавливается по сложной технологии ректификации, когда отгоняемый продукт разделяют на фракции. Теоретически дистилляция и ректификация отличается сложной технологической схемой производства.

  1. Спирт очищают в специальных фильтрах древесным углем от примесей, главное, в получении качественной продукции - это этап ректификации.
  2. В качестве основного сырья выступает пшеница. Для создания сусла используются также зерновые и бобовые культуры: ячмень, просо, кукуруза, горох.
  3. Злаки тщательно измельчают. Муку добавляют в специальные колонны, куда поступает и очищенная вода. В жидкости убирают соли с помощью молекулярной и ультрафиолетовой очистки. Применение дистиллята не допускается! Он портит вкус конечного спиртового продукта, делая его жёстким.
  4. В колоннах сусло подогревают под давлением. На следующем этапе заваренную массу подают в чаны, куда добавляют дрожжи. Происходит процесс ферментации и превращения смеси в брагу.

Жидкость подаётся в перегоночную колонну для получения спирта-сырца. Задача следующей ректификационной колонны - очистка. На стадии технологической цепочки становится ясно, чем отличается дистилляция от ректификации.

Температура кипения спирта 78 градусов, воды - 100. Свойство химического органического соединения используют для разделения на части. Каждая фракция отгоняемого спирта с определённым составом поступает в специальную ёмкость.

  1. С этанолом связан отбор фракций при ректификации. Первые капли жидкости с неприятным запахом и вредными веществами при отгонке бракуют. Их называют ещё «голова» или «первач». Они отделяются при более низких температурах.
  2. «Тело» - средняя фракция практически без запаха. При температуре 90-95 градусов происходит отгонка. Ректификованный спирт имеет крепость 37-45 %.
  3. «Хвост» представляет собой последнюю фракцию, где оставшиеся вещества - сивушные масла. Они переходят при ректификации в конечный продукт. Отличие этой части от средней фракции в характерном резком запахе. При перегонке важно проследить заключительную стадию, чтобы не отогналось «тело» с вредными соединениями.

Отсюда отличие промышленного производства водки от изготовления в быту. Скрупулёзное следование технологии ректификации позволяет получить чистый спирт. Отличие его от дистиллята в отсутствии примесей. В ректифицированный продукт вносят органолептику, помещая его в бочки из древесины, чаще дуба.

В домашнем виноделии нужно определить для себя задачу: добиться напитка чище слезы или получить настойку с ароматом калгана, других трав и даже букета, сделав домашний коньяк. Последний вариант позволяет ощутить вкус и аромат настойки.

Но иногда при изготовлении алкогольных напитков требуется, чтобы оставались органолептические свойства: аромат, консистенция, цвет. При создании кальвадоса - яблочного и грушевого бренди используют сидр, который получают только из фруктов.

Процессы дистилляции и ректификации применяют при производстве спиртных напитков, в фармацевтической промышленности, науке. Несмотря на различия, они востребованы и имеют достоинства.

Внимание - ректификат вызывает зависимость!

Как видите изготовление спиртов таит в себе нюансы и весомые отличия. А как думаете, чем отличается исходное сырьё .

Основные виды концентрирования, очистки и разделения веществ.

В настоящее время существует значительное количество методов разделения, концентрирования и очистки веществ и создаются все новые в связи с актуальностью задач получения и анализа суперчистых материалов с заданными свойствами, например, для наноэлектроники, полупроводниковой и вычислительной техники, биологических препаратов нового поколения. Наиболее распространенными из них являются:

Ø методы испарения (перегонка, упаривание и отгонка);

Ø озоления;

Ø экстрагирования;

Ø осаждения и соосаждения;

Ø управляемой кристаллизации;

Ø сорбционные и ионообменные методы;

Ø электрохимические методы.

Применение каждого из методов очистки определяется как выбранной методикой анализа, так и физико-химическими свойствами системы (агрегатное состояние компонентов, химическая и термическая устойчивость веществ, содержание определяемого компонента в исходной пробе и т. д.). Как правило в основе процесса очистки лежит либо химическая реакция (реакции осаждения, ионного обмена, окисления), либо физический процесс (диффузия, адсорбция и десорбция, испарение и конденсация) (рисунок 2.1).

Рисунок 2.1 – общие принципы и способы разделения компонентов на фазы (концентрирования и разделения веществ).

Учитывая многообразие способов концентрирования веществ, поясним значение некоторых терминов.

Разделение –это операция, в результате которой компоненты, входящие в исходную смесь, отделяются друг от друга.

Концентрирование – это процесс, в результате которого содержание определяемого или очищаемого компонента в веществе повышается, по сравнению с его исходным содержанием. Концентрирование может быть абсолютным и относительным .

Абсолютное концентрирование – это перевод микрокомпонента (примеси) из исходного образца большого объема или массы, в новый образец с меньшим объемом (массой). Такое концентрирование происходит при процессах экстрагирования, осаждения, перегонки и т. д.



Относительное концентрирование (обогащение) заключается в увеличении содержания интересующего компонента в исходном образце по отношению к другим компонентам или растворителю. Например, при упаривании раствора или озолении пробы.

Испарение – процесс перехода вещества из жидкой или твердой фазы в газообразную, который осуществляется тем или иным путем. Методы испарения можно реализовать в виде перегонки и отгонки (упаривания, выпаривания и возгонки).

Перегонка – это разделение жидких смесей, основанное на переводе летучего компонента в газовую фазу путем испарения его и последующей конденсацией.

Конденсат – продукт, образующийся при охлаждении газовой или паровой фазы.

Отгонка – удаление летучих компонентов из твердых веществ (порошков, кристаллов) или растворов при нагревании.

Упаривание – метод отгонки, в процессе которого происходит удаление части растворителя и летучих примесей в следствии длительного нагрева пробы. При упаривании часть основы (обычно растворителя) остается в образце.

Выпаривание (до суха) сопровождается полным удалением растворителя и летучих компонентов из исходного образца.

Возгонка или сублимация – это процесс, при котором твердое вещество переводят в газовую фазу минуя стадию плавления. Продукт конденсации, образующийся в процессе возгонки называют сублиматом .

Озоление – метод, при котором исходный образец путем нагрева переводят в минеральный остаток, называется золой . Его используют обычно при анализе различных веществ на содержание микроэлементов или общего количества органических веществ (анализ почв). Различают сухое озоление , когда пробу вещества калят в тигле при нагреве не выше 500ºС, и влажное (мокрое) . При влажном озолении исходную навеску вещества помещают в тигель и обрабатывают либо кислотами, либо ще6лочами, а образующиеся летучие продукты удаляются в процессе ее прокаливания. Озоление можно рассматривать как частный случай минерализации пробы.

Метод перегонки (дистилляция)

Перегонка (дистилляция) относится к группе методов, базирующихся на термическом испарении веществ, и применяется для очистки воды и разделения органических жидкостей с относительно близкими температурами кипения . Она основана на различии в летучести веществ . Сущность процесса перегонки заключается в том, что в испарителе смесь веществ (обычно раствор) нагревают выше температуры кипения наиболее летучего компонента. Образовавшаяся таким образом газовая (паровая) фаза имеет более высокую концентрацию летучего компонента, по сравнению с исходным раствором. Эту фазу затем охлаждают (конденсируют) в холодильнике, получая на его выходе конденсат (жидкость либо твердое вещество), обогащенный наиболее летучим соединением. При необходимости процесс повторяют до тех пор, пока не будет достигнута необходимая степень разделения или концентрирования компонентов.

Процесс перегонки можно охарактеризовать количественно, рассчитав коэффициент распределения D . Пусть имеется 2-х компонентная идеальная система А + В (отсутствует межмолекулярное взаимодействие, а компоненты химически инертны по отношению друг к другу). При нагревании такой системы до температуры испарения, например компонента А , получим газовую фазу, которая находится в равновесии с оставшимся раствором. При этом газовая фаза обогатится более летучим компонентом А , а в оставшемся растворе возрастет соответственно концентрация компонента В. Молярные доли компонентов А и В в обеих фазах связаны соотношением:

где у А и у В – молярные доли в газовой фазе; a = 1/D – коэффициент разделения (относительная летучесть); х А и х В – молярные доли компонентов в жидкой фазе. Учитывая, что x + y = 1 – сумма молярных долей компонентов в исходном растворе, и x A + x В = x; y A + y В = y, то коэффициент распределения D можно вычислить из соотношения:

D = . (2.2)

Формула (3.2) может быть преобразована с помощью уравнения Клаузиуса-Клапейрона в выражение для приближенного вычисления летучести компонентов:

lga = 8,9 . (2.3)

где Т кип (А) и Т кип (В) – температуры кипения разделяемых компонентов А и В соответственно. Из формулы 2.3 следует, что чем выше разница в температурах кипения разделяемых компонентов, тем выше степень их разделения в одностадийном процессе.

В пищевой, фармацевтической и химической промышленности дистилляция - это один из способов водоподготовки, который применяется наряду с ионным обменом. Для аналитических целей пригодна вода либо однократной очистки (дистиллят), либо двукратной – бидистиллят . Одностадийная дистилляция обычно используется для разделении веществ со значительной разницей в температурахкипения . При этом анализируемым компонентом может обогащаться как жидкая фаза, остающаяся после дистилляции, так и газовая фаза, а значит и образующийся конденсат Этот метод непригоден для азеотропных смесей (системы, в которых состав газовой и жидкой фазы одинаковы и находятся в состоянии равновесия). В этом случае полного разделения компонентов достичь невозможно.

Метод ступенчатой дистилляции (ректификации) осуществляют в специальных колоннах и используют при разделении на фракции многокомпонентных гомогенных смесей жидкостей с достаточно близкими температурами кипения . Он широко распространен в перерабатывающей промышленности, в частности, при получении продуктов перегонки нефти, таких как: петролейные эфиры, бензины, керосины и масла.

При очистке продуктов с низкой термической устойчивостью, присущей для некоторых органических и биологически активных веществ, осуществляют молекулярную дистилляцию - низкотемпературная дистилляция в высоком вакууме , которую проводят при остаточном давлении 1,3 – 1,8 кПа и ниже. В этом случае процесс разделения и концентрирования может протекать либо без нагрева, либо при температурах, значительно ниже комнатной. Молекулярная дистилляция используется при производстве фармацевтических препаратов и биоактивных пищевых добавок.

Методы отгонки.

Отгонку делят на простую или выпаривание и возгонку (сублимацию ). При выпаривании вещества удаляются в форме готовых летучих соединений. Осуществить выпаривание можно различными способами: нагреванием снизу (водяные и песчаные бани); сверху (инфракрасные лампы), используя сушку под вакуумом (лиофильная сушка ) - для исключения потерь связанной влаги или термически неустойчивых компонентов. Выпаривание позволяет к примеру, значительно повысить концентрацию солей в растворе (получение рапы).

Частный случай выпаривания – упаривание до суха . Этот прием применяют, когда необходимо или значительно повысить концентрацию нелетучего компонента, или растворитель и летучие примеси мешает проведению анализа. При упаривании вещество сначала длительно осторожно нагревают (выпаривают) до образования практически сухого остатка. Иногда применяют дополнительно прокаливание сухого остатка при более высокой температуре, чтобы удалить следовые количества растворителя. Качество выпаривания можно контролировать по изменению массы сухого остатка.

Отгонка будет более эффективна, если на вещество воздействовать еще и химически с помощью реагентов – сухая и мокрая минерализация . Минерализацию образцов широко используют в элементном органическом анализе. Пробу, органическую или биологическую, помещают в трубчатую печь или автоклав, через которую продувают воздух или кислород. В процессе окисления (сжигания) ее образуются летучие соединения такие, как CO, CO 2 , N 2 , SO 2 , SO 3 , которые легко могут быть определены с помощью специальных приборов – газоанализаторов или, после селективного поглощения (адсорбции ) газов, по стандартной методике. При сухой минерализации погрешность анализа выше, чем при мокрой . Это обусловлено потерями легколетучих компонентов и отчасти нелетучих, захватываемых каплями образовавшегося аэрозоля. Снижения потерь вещества при сухой минерализации можно добиться при использовании автоклавов (устройства для нагрева при повышенном давлении).

Мокрая минерализация заключается в воздействии на пробу минеральных кислот или щелочей в комплексе с окислителями (H 2 O 2 , KClO 3 , KMnO 4), растворение устойчивых соединений проводят в автоклавах при нагреве и повышенном давлении, а определение – в специальных камерах, соединенных с анализатором. Эффективно также применение ряда твердых, жидких и газообразных минерализаторов, способных селективно переводить некоторые труднорастворимые вещества в газовую фазу (галогены и галогеноводороды, CCl 4 , AlCl 3 , BBr 3).

Сублимация это вариант отгонки, который заключается в разделении веществ путем перевода одного или нескольких компонентов при нагревании в газовую фазу минуя жидкую . Для этой цели применяют устройства - сублиматоры , состоящие из испарителя и зоны сублимации с более низкой температурой (вплоть до отрицательных). В зоне сублимации при конденсации газов вновь образуется твердое вещество (сублимат). Этот метод можно использовать в том случае, когда разделяемые компоненты, например, плохо растворимы или трудно плавятся. Ограниченное применение сублимации обусловлено малым количеством пригодных для этой цели матриц. Примером сублимационной очистки в аналитических целях служит отделение кристаллического иода от нелетучих примесей.

На качество очистки при сублимации влияют размер частиц и однородность распределения компонентов в них. Поэтому более качественной будет отгонка в тщательно измельченных пробах, а также в тех, где отгоняется основное вещество (макрокомпонент) , а не примеси (микрокомпоненты ).

Для низко температурного полного обезвоживания неустойчивых веществ применяют низкотемпературную отгонку под вакуумом – сублимационная сушка , которую можно рассматривать как вариант лиофильной сушки, выполняемой в болеежестком режиме.

Метод экстрагирования.

Метод экстракционного разделения (экстракция ) широко применяется не только в химическом анализе, но и на производстве, так как позволяет сконцентрировать анализируемое вещество в небольшом объеме раствора. Процесс экстракции основан на избирательном извлечении одного или нескольких компонентов из смеси жидких или твердых фаз с помощью органического растворителя (экстрагента) не смешивающегося с водой. В основе процесса экстракции - различие растворимости компонентов смеси в водной и органическойфазах . В органических веществах (спиртах, эфирах, бензинах и т.д.) хорошо растворяются многие неорганические соли (нитраты, хлориды, роданиды) и комплексные соединения.

Более эффективно извлечение происходит при применении смеси экстрагентов. Явление возрастания степени извлечения при воздействии смеси экстрагентов называют синергизмом. Степень извлечения можно также повысить, добавляя в экстрагент экстракционный реагент, например, дитизон или оксихинолин, формирующие комплексы со многими катионами металлов. В результате проведения экстракции получается экстракт , который может быть как в виде раствора, так и сухого вещества (сухие экстракты ). Сухие экстракты обычно образуются из жидких путем их высушивания каким-либо способом.

К основным понятиям этого метода относят:

Ø реэкстракция – процесс извлечения выделяемого компонента из экстракта в водную или иную фазу;

Ø реэкстрагент – раствор реагента (чаще водный), используемый для извлечении вещества из экстракта;

Ø соэкстрагент – органический или иной растворитель, применяемый в смеси с основным экстрагентом с целью повышения селективности процесса или степени экстракции;

Ø синергизм – существенное повышение степени извлечения (экстракции) при использовании смеси экстрагентов, по сравнению с действием каждого из них по-отдельности;

Ø экстрагент – органический или иной растворитель, извлекающий компонент из водного раствора;

Ø экстракционный реагент – составная часть экстрагента, реагент, образующий с извлекаемым веществом хорошо растворимое в экстрагенте соединение, чаще всего - органический комплекс;

Ø экстракт – органическая фаза, содержащая выделяемый компонент;

Ø экстрактор – аппарат для проведения экстракции.

Конструкции экстракторов достаточно разнообразны (рис. 2.2) и подбираются в зависимости от условий проведения процесса и применяемых реагентов.

Рисунок 2.2 – схемы экстракторов различного назначения

(в – водная фаза; о – органический растворитель):

а – делительные воронки (случай, когда плотность экстрагента выше, чем водной фазы); б – прибор непрерывной экстракции (при плотность экстрагента ниже, чем воды).

Различают: периодическую экстракцию (выполняется отдельными порциями экстрагента), непрерывную (при постоянном перемещении фаз друг относительно друга, при этом водная фаза обычно неподвижна) и противоточную , где органическая фаза постоянно перемещается через серию экстракционных трубок, содержащих свежие порции водного раствора. В качестве простейшего экстрактора можно использовать делительную воронку с двумя кранами (рис. 2.2 – а), которая применяется для выполнения периодической экстракции . После заполнения воронки водно-органической смесью раствора, ее энергично встряхивают и дают отстояться, через нижний кран осторожно удаляют водный раствор (если плотность органического реагента меньше, чем водного), стараясь, чтобы экстракт остался в воронке. Разделение фракций протекает с высокой скоростью в течении 1 – 3 минут. Если плотность органической фазы выше, чем водной, то в нижней части воронки будет скапливаться экстракт, который затем также осторожно удаляется.

Первые упоминания о процессе дистилляции можно отнести к 1 тысячелетию до нашей эры. Аристотель - один из первых ученых, кто полностью описал эту технологию. Позже и различные алхимики со всего мира занимались этим процессом. Можно найти упоминания о перегонке спирта у многих народностей, пользующихся сырьем из винограда, сахарного тростника, яблочного сока, слив и многого другого. Египетские алхимики внесли существенный вклад в развитие дистилляции. Они придерживались мнения, что, благодаря перегонке, из вина можно выделить "душу", а в русской терминологии "спиритус" был упрощен до слова "спирт". Ниже мы поговорим о данном явлении и узнаем, что такое это - дистилляты.

Что такое дистилляция

С латинского языка это означает "стекание каплями". Данная технология является ни чем иным, как перегонкой жидкости, в результате чего она испаряется, превращаясь в пар при охлаждении после контакта с воздухом. Дистилляцию разделяют на 2 вида:

  1. С конденсацией пара в жидкость.
  2. С конденсацией пара в твердую фазу.

Таким образом, дистилляты - это полученная жидкость или твердое вещество (иначе его называют остаток), полученное в результате конденсата. Помимо этого, дистилляцию разделяют на простую и фракционную. В первом варианте - это непрерывный отвод и испарение жидкости, а второй метод предполагает проведение перегонки с различными температурами, и каждый отвод уходит на отдельную колбу.

Для проведения данного процесса необходимы основные элементы:

  • обогреваемая закрытая емкость (куб, контейнер);
  • каплеуловитель (труба для устранения уноса брызг);
  • охлаждаемый конденсатор (холодильник);
  • конденсатор в (труба в трубе);
  • паропровод (или змеевик), соединяющий оба элемента;
  • приемная емкость.

Для чего используют дистилляцию

Это нужно, когда есть необходимость разделить жидкость на несколько фракций или отделить от примесей. Это касается эфирных масел, воды, гидролатов, цветочной воды, алкоголя и нефтепромышленности. Важно помнить, что соблюдение мер безопасности является ключевым моментом протекания дистилляции.

Обычную питьевую воду подвергают данной технологии для ее очистки. На выходе мы получаем чистую воду без различных примесей. Соли, металлы, микроорганизмы, песок и прочее оседают в кубе, подогреваемом с жидкостью. А конденсат дистиллята избавлен от этих добавок.

Но самая востребованная причина дистилляции - это спиртовая перегонка. В результате нее получают спиртовой продукт. Получается, что такие спиртосодержащие напитки - это дистилляты.

Этапы протекания технологии

Если говорить простым языком, то для получения конечного спиртосодержащего продукта необходимо провести технологию в 3 этапа испарения жидкости.

В плотно закрытой (герметичной) емкости помещена брага (спиртосодержащая основа), которая при нагревании начинает конденсировать при прохождении через змеевик. Первая (или "головная") фракция испарения является самой легкой и в ней содержится Вдыхать и пить его нельзя, так как от него получают сильнейшую интоксикацию, от которой слепнут и умирают.

Вторая фракция (или как ее еще называют "средний дистиллят") - этиловый спирт, именно он и является целью спиртовой дистилляции. Под конец из змеевика капает обычная вода, почти лишенная спирта, но в ней присутствуют тяжелые металлы (бутанол и изопропанола), которые тоже ядовиты, но не как метанол, - несут тяжелое похмелье. Эту фракцию называют "хвостовой". Процесс прекращают тогда, когда дистиллят перестает гореть.

Получается, что "золотая середина" спирта - дистиллята является целью получения элитного алкогольного напитка. К примеру, коньяк, арманьяк, кальвадос, шотландский и ирландский виски, испанский и португальский бренди, мексиканская текила и многие другие изготавливаются именно по этой традиционной технологии спиртовой дистилляции.

Дистиллят - это не просто очищенная жидкость от примесей, это сохранность вкусовых качеств. Особенностью дистилляции является то, что полностью избавиться от примесей невозможно из-за летучести компонентов. Но именно благодаря этому качеству алкогольные напитки сохраняют свой неповторимый ароматный вкус. К примеру, если 100-летнее шотландское виски подвергнуть ректификации (более точное разделение фракций, более чистый спирт), то по вкусу от водки ничем отличаться не будет.

Дистиллят газового конденсата (ДГК)

Это прозрачная жидкость, которая образуется в результате перегонки природных газов и не растворяется в воде. В состав них входят бензиновые, керосиновые фракции без смолистых веществ. Другими словами, это продукт нефтепереработки. Его применяют в качестве или растворителя в лакокрасочной промышленности.

Эти дистилляты разделяются на легкий, средний и тяжелый ДГК. Самый популярный из них используют в нефтяной промышленности в виде добавок в получении бензина, топлива, это легкий ДГК.

Средний дистиллят близок по своему составу к зимним маркам дизельного топлива. Тяжелый - это остаточные фракции перегонки и применяются на технологических установках, котельных в качестве топлива.

Применение и транспортировка ДГК

Нефтехимический дистиллят - это взрывоопасное и взрывчатое вещество. Транспортировка вещества осуществляется с соблюдением строжайших требований безопасности в герметичных емкостях из антикоррозийного покрытия.

Из него изготавливают также некоторые виды полимерных материалов, при соответствующей химической очистке и стабилизации дистиллята. А также в производстве присадок с высоким значением октанового числа и выступает сырьевым материалом для синтеза олефинов. Прекрасно справляется с жирными пятнами на машинных механизмах и выступает в качестве растворителя в лакокрасочной промышленности.

В заключение о дистиллятах

Дистиллят - это продукт, полученный в результате физико-химического процесса, называемого дистилляцией. Технология несложная, но требует соблюдения безопасности и четкого выполнения последовательных действий. На протекание процессов влияет множество факторов, проводить перегонку стоит только при наличии специальных знаний и навыков.

Различают дистилляцию с конденсацией пара в жидкость (при которой получаемый дистиллят имеет усреднённый состав вследствие перемешивания) и дистилляцию с конденсацией пара в твёрдую фазу (при которой в конденсате возникает распределение концентрации компонентов). Продуктом дистилляции является дистиллят или остаток (или и то, и другое) - в зависимости от дистиллируемого вещества и целей процесса. Основными деталями дистилляционного устройства являются обогреваемый контейнер (куб) для дистиллируемой жидкости, охлаждаемый конденсатор (холодильник) и соединяющий их обогреваемый паропровод.

Энциклопедичный YouTube

    1 / 4

    ✪ 7.4.Дистилляция часть-4 вторичная дробная дистилляция

    ✪ Вакуумная дистилляция Часть 1

    ✪ 7.2. Дистилляция часть-2 первичная дистилляция

    ✪ 7.3. Дистилляция часть-3 первичная дистилляция

    Субтитры

История

Первые сведения о дистилляции относятся к I веку и упоминаются в работах греческих алхимиков в Александрии (Египет) . В XI веке, у Авиценны , дистилляция упоминается как метод получения эфирных масел . C середины XIX века разрабатывается ректификация .

Применение

Теория дистилляции

В теории дистилляции в первую очередь рассматривается разделение смесей двух веществ . Принцип дистилляции основан на том, что концентрация некоторого компонента в жидкости отличается от его концентрации C 2 {\displaystyle C_{2}} в паре этой жидкости. Отношение β {\displaystyle \beta } = C 2 / C 1 {\displaystyle C_{2}/C_{1}} является характеристикой процесса и называется коэффициентом разделения (или распределения) при дистилляции. (Также коэффициентом разделения при дистилляции называют величину α=1/β). Коэффициент разделения зависит от природы разделяемых компонентов и условий дистилляции. В зависимости от условий дистилляции различают идеальный (определяемый только парциальными давлениями паро́в чистых компонентов), равновесный (когда число частиц, покидающих в единицу времени жидкость, равно числу частиц, возвращающихся в это же время в жидкость) и эффективный коэффициенты разделения. Практически дистилляция веществ сильно зависит от интенсивности перемешивания жидкости, а также от взаимодействия примесей с основным компонентом и с другими примесными компонентами с образованием соединений (в связи с чем дистилляция считается физико-химическим процессом). Эффективный коэффициент разделения смеси «основное вещество - примесь» может на несколько порядков отличаться от идеального коэффициента разделения.

Режимы дистилляции характеризуются температурой испарения и степенью отклонения от фазового равновесия жидкость-пар. Обычно в дистилляционном процессе n=+, где n - число частиц вещества, переходящих в единицу времени из жидкости в пар, n 1 {\displaystyle n_{1}} - число частиц, возвращающихся в это же время из пара в жидкость, n c {\displaystyle n_{c}} - число частиц, переходящих в это время в конденсат. Отношение n c {\displaystyle n_{c}} /n является показателем отклонения процесса от равновесного. Предельными являются режимы, в которых n c {\displaystyle n_{c}} =0 (равновесное состояние системы жидкость-пар) и n c {\displaystyle n_{c}} =n (режим молекулярной дистилляции).

Идеальный коэффициент разделения двухкомпонентного вещества может быть выражен через давления p 1 0 {\displaystyle p_{1}^{0}} и p 2 0 {\displaystyle p_{2}^{0}} чистых компонентов при температуре процесса: β i {\displaystyle \beta _{i}} = p 2 / p 1 {\displaystyle p_{2}/p_{1}} . С учётом коэффициентов активности компонентов γ 1 {\displaystyle \gamma _{1}} и γ 2 {\displaystyle \gamma _{2}} , отражающих взаимодействие компонентов в жидкости, равновесный коэффициент β = γ 2 p 2 0 / γ 1 p 1 0 {\displaystyle \beta =\gamma _{2}p_{2}^{0}/\gamma _{1}p_{1}^{0}} . Коэффициенты активности имеют температурную и концентрационную зависимости (см. активность (химия)). С понижением температуры значение коэффициента разделения обычно удаляется от единицы, то есть эффективность разделения при этом увеличивается.

При n c {\displaystyle n_{c}} =n все испаряющиеся частицы переходят в конденсат (режим молекулярной дистилляции). В этом режиме коэффициент разделения β m = β M 1 / M 2 {\displaystyle \beta _{m}=\beta {\sqrt {M_{1}}}/{\sqrt {M_{2}}}} , где M 1 {\displaystyle M_{1}} и M 2 {\displaystyle M_{2}} - молекулярные массы первого и второго компонентов соответственно. Определение молекулярного режима дистилляции возможно по величине N=h/(Kλ), где h - расстояние от испарителя до конденсатора, λ - длина свободного пробега молекул дистиллируемого вещества, K - константа, зависящая от конструкции аппарата. При N<0,25 наблюдается молекулярное испарение, при N>4 между жидкостью и паром устанавливается динамическое равновесие, а при других значениях N испарение имеет промежуточный характер. Режим молекулярной дистилляции может применяться в различных дистилляционных способах, включая ректификацию . Обычно молекулярная дистилляция осуществляется в вакууме при низком давлении пара и при близком расположении поверхности конденсации к поверхности испарения (что исключает столкновение частиц пара друг с другом и с частицами атмосферы). В режиме, близком к молекулярной дистилляции, проводится дистилляция металлов. В связи с тем, что коэффициент разделения при молекулярной дистилляции зависит не только от парциальных давлений компонентов, но и от их молекулярных (или атомных) масс, молекулярная дистилляция может применяться для разделения смесей, для которых β=1, - азеотропных смесей , включая смеси изотопов .

Для различных режимов дистилляции выведены уравнения, связывающие содержание второго компонента в конденсате C / C 0 {\displaystyle C/C_{0}} и в остатке с долей перегонки G / G 0 {\displaystyle G/G_{0}} или с долей остатка при заданных условиях процесса и известной начальной концентрации жидкости ( G {\displaystyle G} , G 1 {\displaystyle G_{1}} и G 0 {\displaystyle G_{0}} - масса конденсата и остатка, а также начальная масса дистиллируемого вещества соответственно). Расчёты проводятся в предположении идеального перемешивания дистиллируемой жидкости, а также жидкого конденсата. Также выведены уравнения распределения компонентов в твёрдом конденсате, получаемого дистилляцией с направленным затвердеванием конденсата или зонной дистилляцией. Параметром этих уравнений является коэффициент разделения β для заданных условий дистилляции.

При дистилляции вещества с большой концентрацией компонентов с конденсацией пара в жидкость при несильной зависимости коэффициентов активности компонентов от их концентраций взаимосвязь величин G 1 / G 0 {\displaystyle G_{1}/G_{0}} , C 1 {\displaystyle C_{1}} и C 0 {\displaystyle C_{0}} , когда используются концентрации в процентах, имеет вид:

L g G 1 G 0 = 1 β − 1 l g C 1 C 0 − β β − 1 l g 100 − C 1 100 − C 0 {\displaystyle lg{\tfrac {G_{1}}{G_{0}}}={\tfrac {1}{\beta -1}}lg{\tfrac {C_{1}}{C_{0}}}-{\tfrac {\beta }{\beta -1}}lg{\tfrac {100-C_{1}}{100-C_{0}}}} .

Для дистилляции с конденсацией пара в жидкость при малом содержании примеси

C / C 0 = 1 − (1 − G / G 0) β G / G 0 {\displaystyle C/C_{0}={\tfrac {1-(1-G/G_{0})^{\beta }}{G/G_{0}}}} ,

C 1 / C 0 {\displaystyle C_{1}/C_{0}} = (G 1 / G 0) β − 1 {\displaystyle (G_{1}/G_{0})^{\beta -1}} ,

где β - отношение концентраций примеси в паре и в жидкости.

Приведённые дистилляционные уравнения описывают не только процессы равновесия компонентов в системах газ-жидкость, но и при описании распределения компонентов двух контактирующих фаз при интенсивном перемешивании (например, переходы жидкий кристалл-кристалл, жидкий кристалл-жидкость, газ-плазма, а также в переходах, связанных с квантово-механическими состояниями - сверхтекучая жидкость , конденсат Бозе - Эйнштейна) - при подстановке в них соответствующих коэффициентов разделения. Зачастую они пригодны для теоретического описания сублимации - прежде всего, при температуре вблизи температуры плавления.

Дистилляция с конденсацией пара в жидкость

Простая перегонка - частичное испарение жидкой смеси путём непрерывного отвода и конденсации образовавшихся паров в холодильнике. Полученный конденсат называется дистиллятом, а неиспарившаяся жидкость - кубовым остатком.

Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части, фракции, путём сбора конденсата частями с различной летучестью, начиная с первой, обогащенной низкокипящим компонентом. Остаток жидкости обогащён высококипящим компонентом. Для улучшения разделения фракций применяют дефлегматор .

Ректификация - способ дистилляции, при котором часть жидкого конденсата (флегма) постоянно возвращается в куб, двигаясь навстречу пару в колонне . В результате этого примеси, содержащиеся в паре, частично переходят во флегму и возвращаются в куб, при этом чистота пара (и конденсата) повышается.

Дистилляция с конденсацией пара в твёрдую фазу

Дистилляция с конденсацией пара в градиенте температуры - дистилляционный процесс, в котором конденсация в твёрдую фазу осуществляется на поверхности, имеющей градиент температуры, с многократным реиспарением частиц пара. Менее летучие компоненты осаждаются при более высоких температурах. В результате в конденсате возникает распределение примесей вдоль температурного градиента, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Разделение компонентов пара при реиспарении подчиняется собственным закономерностям. Так, при молекулярной дистилляции соотношение между количествами Q 1 {\displaystyle Q_{1}} и Q 2 {\displaystyle Q_{2}} осаждённых в конденсаторе первого и второго компонентов, соответственно, выражается равенством:

Q 1 / Q 2 = (μ η 1 W 1 0 − W 1) / (μ η 2 W 2 0 − W 2) {\displaystyle Q_{1}/Q_{2}=(\mu \eta _{1}W_{1}^{0}-W_{1})/(\mu \eta _{2}W_{2}^{0}-W_{2})} ,

где W 1 0 {\displaystyle W_{1}^{0}} и W 1 {\displaystyle W_{1}} - скорости испарения первого компонента из расплава и с поверхности реиспарения соответственно, W 2 0 {\displaystyle W_{2}^{0}} и W 2 {\displaystyle W_{2}} - то же для второго компонента, η 1 {\displaystyle \eta _{1}} и η 2 {\displaystyle \eta _{2}} - коэффициенты конденсации первого и второго компонентов соответственно, μ - коэффициент, зависящий от поверхности испарения и углов испарения и реиспарения. Реиспарение повышает эффективность очистки от трудноудаляемых малолетучих примесей в 2-5 раз, а от легколетучих - на порядок и более (по сравнению с простой перегонкой). Этот вид дистилляции нашёл применение в промышленном производстве высокочистого бериллия.

Дистилляция с направленным затвердеванием конденсата (дистилляция с вытягиванием дистиллята) - дистилляционный процесс в контейнере удлинённой формы c полным расплавлением дистиллируемого вещества и конденсацией пара в твёрдую фазу по мере вытягивания конденсата в холодную область. Процесс разработан теоретически.

В получаемом конденсате возникает неравномерное распределение примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс является дистилляционным аналогом нормальной направленной кристаллизации. Распределение примеси в конденсате описывается уравнением:

C / C 0 = β (1 − x / L) β − 1 {\displaystyle C/C_{0}=\beta (1-x/L)^{\beta -1}} ,

где С - концентрация примеси в дистилляте на расстоянии х от начала, L - высота конденсата при полностью испарившемся дистиллируемом материале.

Зонная дистилляция - дистилляционный процесс в контейнере удлинённой формы c частичным расплавлением рафинируемого вещества в перемещаемой жидкой зоне и конденсацией пара в твёрдую фазу по мере выхода конденсата в холодную область. Процесс разработан теоретически.

При движении зонного нагревателя вдоль контейнера сверху вниз в контейнере формируется твёрдый конденсат с неравномерным распределением примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс может быть повторён многократно, для чего конденсат, полученный в предыдущем процессе, должен быть перемещён (без переворота) в нижнюю часть контейнера на место рафинируемого вещества. Неравномерность распределения примесей в конденсате (то есть эффективность очистки) растёт с увеличением числа повторений процесса.

Зонная дистилляция является дистилляционным аналогом зонной перекристаллизации. Распределение примесей в конденсате описывается известными уравнениями зонной перекристаллизации с заданным числом проходов зоны - при замене коэффициента распределения k для кристаллизации на коэффициент разделения α для дистилляции. Так, после одного прохода зоны

C / C 0 = 1 − (1 − β) e x p (− β {\displaystyle C/C_{0}=1-(1-\beta)exp(-\beta } x / λ) {\displaystyle x/\lambda)} ,

где С - концентрация примеси в конденсате на расстоянии х от начала конденсата, λ - длина жидкой зоны.

Девятых Г. Г., Еллиев Ю. Е. Введение в теорию глубокой очистки веществ. - М.: Наука, 1981. - 320 с.
  • Девятых Г. Г., Еллиев Ю. Е. Глубокая очистка веществ. - М.: Высшая школа, 1990. - 192 с.
  • Емельянов В. С., Евстюхин А. И., Шулов В. А. Теория процессов получения чистых металлов, сплавов и интерметаллидов. - М.: Энергоатомиздат, 1983. - 144 с.
  • Жаров В. Т., Серафимов Л. А. Физико-химические основы дистилляции и ректификации. - Л.: Химия, 1975. - 240 с.
  • Степин Б. Д., Горштейн И. Г., Блюм Г. З., Курдюмов Г. М., Оглоблина И. П. Методы получения особо чистых неорганических веществ. - Л.: Химия, 1969. - 480 с.
  • Сийрде Э.К., Теаро Э.Н., Миккал В.Я. Дистилляция. - Л.: Химия, 1971. - 216 с.
  • Калашник О.Н., Нисельсон Л.А. Очистка простых веществ дистилляцией с гидротермальным окислением примесей // Высокочистые вещества, 1987. - № 2. - С. 74-78.
  • Корякин Ю. В., Ангелов И. И. Чистые химические вещества. Руководство по приготовлению неорганических реактивов и препаратов в лабораторных условиях. - М.: Химия, 1974. - с.
  • Беляев А. И. Физико-химические основы очиски металлов и полупроводниковых веществ. - М.: Металлургия, 1973. - 224 с.
  • Нисельсон Л. А., Лапин Н. В., Бежок В. С. Определение относительных летучестей примесей в жидком германии // Высокочистые вещества, 1989. - N. 6. - С. 33-38 [Содержатся сведения о коэффициенте f скорости испарения вещества - со ссылкой на: Borrows G. // Trans. Inst. Chem. Eng., 1954. - V. 32. - P. 23.]
  • Пазухин В. А., Фишер А. Я. Разделение и рафинирование металлов в вакууме. - М.: Металлургия, 1969. - 204 с.
  • Иванов В. Е., Папиров И. И., Тихинский Г. Ф., Амоненко В. М. Чистые и сверхчистые металлы (получение методом дистилляции в вакууме). - М.: Металлургия, 1965. - 263 с.
  • Несмеянов А. Н. Давление пара химических элементов. - М.: Издательство АН СССР, 1961-320 с.
  • Кравченко А. И. О временной зависимости состава двойного сплава при его разгонке в вакууме // Известия АН СССР. Серия: Металлы. - 1983. - № 3. - С. 61-63.
  • Кравченко А. И. Об уравнениях дистилляции при малом содержании примеси // Вопросы атомной науки и техники, 1990. - № 1 - Серия: «Ядерно-физические исследования» (9). - С. 29-30.
  • Нисельсон Л. Я., Ярошевский А. Г. Межфазовые коэффициенты распределения (Равновесия кристалл-жидкость и жидкость-пар). - М.: Наука, 1992. - 399 с.
  • Kravchenko A.I. Simple substances refining: efficiency of distillation methods // Functional Materials, 2000 - V.7. - N. 2. - P. 315-318.
  • Кравченко А. И. Уравнение распределения примеси в твёрдом дистилляте // Неорганические материалы, 2007. - Т. 43. - № 8. - С. 1021-1022.
  • Кравченко А. И. Эффективность очистки в дистилляционном и кристаллизационном процессах // Неорганические материалы, 2010. - Т. 46. - № 1. - С. 99-101.
  • Кравченко А. И. Дистилляция с вытягиванием дистиллята // Вопросы атомной науки и техники, 2008. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (17). - С. 18-19.
  • Кравченко А. И. Зонная дистилляция // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 24-26.
  • Кравченко А. И. Разработка перспективных схем зонной дистилляции // Перспективные материалы, 2014. - №7. - С. 68-72. .
  • Кравченко А. И. О распределении примесей при фазовых переходах из фазы с идеальным перемешиванием // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 27-29.
  • Кравченко А. И. Зависимость эффективного коэффициента разделения в некоторых металлических системах основа-примесь от степени перегонки // Неорганические материалы, 2015. - Т. 51. - № 2. - С. 146-147.
  • Распределение примесей в сублимате магния // Неорганические материалы, 2015. - Т. 51. - № 6. - С. 625-627.
  • Кириллов Ю. П., Кузнецов Л. А., Шапошников В. А. , Чурбанов М. Ф. Влияние диффузии на глубину очистки веществ дистилляцией // Неорганические материалы, 2015. - Т. 51. - № 11. - С. 1177-1189.
  • Кравченко А. И. Соотношение между эффективным и идеальным коэффициентами разделения при дистилляции и сублимации // Неорганические материалы, 2016. - Т. 52. - № 4. - С. 423-430.
  • Кириллов Ю. П., Шапошников В. А. , Кузнецов Л. А., Ширяев В. С. , Чурбанов М. Ф. Моделирование испарения жидких веществ и конденсации их паров при дистилляции // Неорганические материалы, 2016. - Т. 52. - № 11. - С. 1256-1261.
  • Кравченко А. И. О температурной зависимости идеального коэффициента разделения в системах с близкой летучестью компонентов // Вопросы атомной науки и техники, 2016. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (21). - С. 14-16.
  • Папиров И. И., Кравченко А. И., Мазин А. И., Шиян А. В., Вирич В. Д. Распределения примесей в сублиматах магния // Вопросы атомной науки и техники, 2016. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (21). - С. 21-22.
  • Жуков А.И., Кравченко А.И. Расчёт сублимации с учётом диффузии примеси // Неорганические материалы, 2017. - Т. 53. - № 6. - С. 662-668.
  • Кравченко А. И. О применимости идеального коэффициента разделения для расчёта дистилляции и сублимации // Вопросы атомной науки и техники, 2018. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (22). - С. _.
  • Кравченко А. И. О рафинировании простых веществ дистилляцией с добавочным компонентом // Вопросы атомной науки и техники, 2018. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (22). - С. _.
  • ГОСТ 2177 (ASTM D86)
  • Перегонка, или дистилляция - процесс разделения жидких смесей на отличающиеся по составу фракции.

    Она основана на различии при кипении составов жидкости и образующегося из нее пара. Простую перегонку осуществляют путем однократного частичного испарения жидкости и последующей конденсации пара. Отогнанная фракция (дистиллят) обогащена относительно более летучим (низкокипящим) компонентом, а остаток неотогнанной жидкости - менее летучим (высококипящим).

    Область применения.

    Если разделяемые соединения лишь незначительно отличаются по своей летучести, то их невозможно удовлетворительно разделить при однократном испарении и конденсации, т. е. простой перегонкой. В таких случаях процесс испарения и конденсации следует повторять многократно (реактификация, фракционная перегонка).

    При выборе необходимого метода разделения можно руководствоваться следующим эмпирическим правилом: простая однократная перегонка может применяться в тех случаях, когда температуры кипения разделяемых соединений отличаются более чем на 80°С.

    Простую перегонку целесообразно применять для жидкостей с температурой кипения от 40 до 150°С , так как выше 150°С многие соединения уже заметно разлагаются, а жидкости с температурой кипения 40 °С нельзя перегнать без значительных потерь в обычных приборах.

    Жидкости, кипящие выше 150°С, целесообразно перегонять под уменьшенным давлением. Во многих случаях для этого вполне достаточно вакуума водоструйного (8-15 мм рт. ст.) или ротационного масляного (0,01 - 1 мм рт. ст.) насоса. В случае небольших количеств смеси иногда бывает допустима перегонка с воздушным холодильником.

    Некоторые соединения не выдерживают длительного нагревания, поэтому их также следует перегонять при небольшом разрежении (например, метилвинилкетон).

    Сбор установки для простой перегонки.

    На рис.1 изображен простейший прибор для проведения перегонки. Все разъемные элементы в данной установке соединяются между собой резиновыми пробками с просверленными отверстиями. В настоящее время соединения такого типа используются в основном при обучении начинающих химиков.

    При сборе установки следует придерживаться следующего порядка:

    1. Выбрать подходящую перегонную колбу с таким расчетом, чтобы перегоняемая жидкость занимала не более 2/3 ее объема. В противном случае при интенсивном кипении возможен выброс горячей жидкости из колбы в приемный сосуд. В изображенной установке используется круглодонная колба Вюрца с трубкой для отвода паров.
    2. С помощью лапок на подходящей высоте закрепить перегонную колбу на штативе. Напомним, что лапки штатива обязательно должны иметь резиновые или силиконовые прокладки в местах крепления со стеклом.
    3. Выбрать подходящий холодильник для конденсации паров и к нему присоединить два резиновых шланга: один для ввода охлаждающей жидкости, другой для ее отвода. (см. рис.1) Для облегчения соединения внутреннюю поверхность шланга можно смочить водой.
    4. На втором штативе (стоящем в стороне) закрепить холодильник под тем же углом, что и у отводной трубки колбы Вюрца, и поднять на необходимую высоту.
    5. Присоединить холодильник к отводной трубке перегонной колбы. Эта операция у начинающих часто вызывает определенные затруднения и нередко приводит к поломке отводной трубки колбы Вюрца. Для остожного присоединения советуем поступить так: ослабить крепление лапки с холодильником и передвинуть холодильник до закрепления с отводной трубкой. В случае необходимости корректировки угла наклона следует также ослабить крепление лапки с муфтой.
    6. Присоединить один шланг к крану для подачи охлаждающей жидкости, а другой опустить в раковину для ее отвода. Охлаждающая жидкость всегда подается в рубашку холодильника снизу вверх (см. рис.1 стрелка вниз-для входа воды, стрелка вверх - для ее отвода ). В противном случае заполнение рубашки холодильника будет неполным, что в процессе перегонки приведет к образованию местных перегревов и поломке холодильника.
    7. Подать воду в рубашку холодильника. Интенсивность тока жидкости не должна быть слишком высокой.
    8. К холодильнику присоединить алонж - изогнутую трубку для отвода конденсата.
    9. Подставить колбу-приемник.
    10. Выбрать подходящий термометр и закрепить его в горловине колбы Вюрца. Нижний конец термометра должен располагаться немного ниже отверстия отводной трубки, т.е. ртутный шарик в процессе перегонки должен постоянно омываться парами кипящей жидкости.
    11. Под перегонную колбу подставить жидкостную баню (как правило водяную) с нагревательным прибором. (чаще всего электрическую плитку). Баню следует подбирать так, чтобы ее диаметр был больше диаметра нагревательной поверхности плитки. В случае пролива перегоняемой жидкости (часто горючей) баня предохранит ее от воспламенения.
    12. Снять термометр и с помощью воронки аккуратно перелить в колбу Вюрца перегоняемую жидкость.
    13. Кинуть в колбу несколько кипелок - маленьких осколков фарфоровой посуды, кусочков кирпича или гранул цеолита. При нагревании жидкости они выделяют пузырьки воздуха, которые становяться центрами кипения и обеспечивают его равномерность и отсутствие толчков.
    14. Включить нагрев.

    Гораздо чаще элементы установок соединяются между собой с помощью шлифов, а колба Вюрца заменяется обычной круглодонной колбой к которой присоединяются насадки для перегонки различных типов.

    Рис.2 Установка на шлифах для перегонки.

    1 - перегонная колба; 2 - насадка Вюрца; 3 - водяной холодильник (Либиха); 4 - алонж с отводом; 5 - приемный сосуд; 6 - хлоркальциевая трубка. 7 и 8 - резиновые шланги для подачи и слива охлаждающей воды; 9 - жидкостная баня; 10 - электроплитка с закрытым нагревательным элементом; 11 - кипелки; 12 и 13 - термометры для контроля температуры жидкостной бани и паров перегоняемой жидкости; 14 - асбестовая теплоизоляция; 15 - стальные пружинки или резиновые колечки для укрепления шлифов; 16 - держатели (лапки); 17 - кольцо, поддерживающее приемный сосуд; 18 - подъемный "столик-подставка; 19 - передвижная монтажная рама, изготовленная из двух штативов.

    Традиционная установка для перегонки не является единственно возможной. С точки зрения техники безопасности в некоторых отношениях предпочтительна установка, изображенная на рис.3.

    Благодаря большей компактности она может быть закреплена на одном штативе вместо двух. Это обстоятельство дает возможность быстро убрать или передвинуть установку вместе со штативом, что особенно ценно в аварийных ситуациях

    Рис.3 Установка для простой перегонки с вертикальным расположением холодильника.

    1 - перегонная колба с отводом; 2 - переход с двумя горловинами; 3 - холодильник со змеевиковым охлаждением (Димрота); 4 - держатели (лапки); 5 - приемная колба; 6 - хлоркальциевая-трубка (при перегонке абсолютных растворителей)

    Проведение перегонки. Краткие замечания.

    Для лучшего представления о процессе перегонки можно начертить кривую зависимости температуры кипения от объема отогнанного дистиллята (рис.4).

    Участок ab на кривой перегонки характеризует отгон промежуточной фракции, а участок bc - отгонку основного вещества. Объем промежуточной фракции тем меньше, чем больше разница в температурах кипения разделяемых жидкостей.

    При проведении простой перегонки необходимо обратить внимание на следующие моменты:

    • Для эффективного разделения веществ следует поддерживать не слишком высокую скорость перегонки. Нормальной считается скорость, при которой из холодильника стекает примерно 1 капля конденсата в 2-3 с.
    • Необходимо следить за температурой бани, не допуская ее перегрева. Рабочая температура бани должна превышать температуру кипения перегоняемой жидкости примерно на 20-30°С.
    • Если температура кипения жидкости превышает 100°С, то рекомендуется применение масляных бань. В лабораторной практике нагрев таких жидкостей часто производят непосредственно с помощью электоплиток, т.н. воздушных бань . В случае горючих жидкостей такой метод применять недопустимо.
    • Необходимо постоянно следить за работой холодильника. В случае, если в холодильнике происходит неполная конденсация паров, о чем свидетельствует нагревание форштоса холодильника и алонжа, следует немедленно уменьшить интенсивность кипения, слегка опустив баню или добавив в нее немного холодного теплоносителя. Особенно опасно внезапное прекращение подачи воды в холодильник вледствне снижения напора воды в сети или перегиба резинового шланга. В этом случае пары перегоняемой жидкости в большом количестве попадают в атмосферу.
    • Если в ходе перегонки появляется необходимость в замене приемного сосуда, то, во избежание попадания паров перегоняемой жидкости в атмосферу, следует прекратить обогрев и дождаться прекращения кипения.
    • Иногда при длительной перегонке появляется необходимость замены кипелок. Нельзя добавлять свежие кипелки в кипящую жидкость. При этом неизбежно происходит бурное ее вскипание и выброс из колбы. Сперва необходимо опустить нагревательную баню и дать возможность жидкости охладиться на несколько градусов ниже температуры ее кипения. После добавления свежих кипелок можно возобновлять нагревание и продолжать перегонку.
    • Следует строго следить за тем, чтобы внутреннее простанство приборов не предназначенных для работы под давлением, всегда было соединено с атмосферой.
    • Разборку установки производят только после полного ее охлаждения.